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COMPUTATIONAL ASPECTS OF POLYNOMIAL 
INTERPOLATION IN SEVERAL VARIABLES 

CARL DE BOOR AND AMOS RON 

ABSTRACT. The pair (0, P) of a point set 0 C Rd and a polynomial space 
P on Rd is correct if the restriction map P - Re: p 4 Pie is invertible, i.e., 
if there is, for any f defined on 0, a unique p e P which matches f on 8. 

We discuss here a particular assignment 0 H-4 ie, introduced by us previ- 
ously, for which (0, Ie>) is always correct, and provide an algorithm for the 
construction of a basis for Le, which is related to Gauss elimination applied 
to the Vandermonde matrix (Oa)oEe Zd for 8. We also discuss some at- 
tractive properties of the above assignment and algorithmic details, and present 
some bivariate examples. 

We say that the pair (0, P) of a (finite) point set 8 c Rd and a (polynomial) 
space P of functions on Rd is correct if the restriction map 

P +Re: p Pile 
is invertible, i.e., if, for any f defined (at least) on 83, there is exactly one 
p E P which matches f on 8, i.e., satisfies p(O) = f(6) for all ' E E8. 

Polynomial interpolation in one variable is so basic a Numerical Analysis tool 
that many textbooks on Numerical Analysis begin with this topic and none fails 
to provide a detailed account of it. The topic is associated with the illustrious 
names of Newton, Cauchy, Lagrange, and Hermite, and is essential for various 
basic tasks, such as the construction of rules for quadrature and differentia- 
tion, or the construction of difference approximations for ordinary differential 
equations. To be sure, polynomial interpolation is not a general-purpose tool 
for approximation, for the simple reason that polynomials are only good for 
local approximation (though for some particularly well-behaved function, this 
might mean approximation on the entire line). Even in local approximation, 
badly handled polynomial interpolation, such as interpolation at equally spaced 
points, is not to be recommended in general. But well-handled polynomial in- 
terpolation, such as interpolation at the Chebyshev points, is one of the most 
efficient ways available for local approximation. 
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It has been therefore all the more annoying that there has not been available 
a correspondingly simple and effective theory of multivariable polynomial in- 
terpolation. The reason is easy to spot: Whereas there is a unique interpolant 
from the space r1k of polynomials of degree < k for any data given on any 
(k + l)-point set in IR, there is no corresponding universal multivariable space 
of polynomials. In other words, a correct polynomial space P for interpolation 
to an arbitrary f at the given set e) c Rd cannot in general be determined from 
the cardinality #e3 of the point set e3 alone. Rather, the actual location and 
configuration of e3 must be taken into account. Further, the standard choice 
of P = Hk requires that #e3 equal 

dimrk(1Rd)=( d( ) 

Finally, even if t3 satisfies this rather restrictive requirement, there is no guar- 
antee that the pair (E3, Hk) is correct. 

In [3], we give a particular assignment E3 1- H8 for which (E3, H80) is always 
correct, and give an algorithm for the construction of a basis for H8 from E. 
We also prove there some of its nice properties. In the present paper, we list 
these and other properties of our assignment e H-+ HE and, eventually, verify 
the additional ones. We also provide some enticing (so we hope) examples. But 
the main point of the present paper is a detailed discussion of the algorithmic 
aspects of our particular choice: How is H8 to be constructed and, once in 
hand, how is the interpolant from it to be found? 

We did provide in [3] an algorithm for the construction of He, but found 
to our surprise (cf. [2]) that H8 can also be constructed by Gauss elimination 
applied to the Vandermonde matrix (Oa) for E3, but with a twist. This allows 
us to view our particular assignment H8 in retrospect as arising from a stabi- 
lization and symmetrization of a simple-minded approach for finding a correct 
polynomial space of minimal degree for interpolation at E3. 

The paper is organized as follows: 
In ? 1, we recall necessary details from [3] concerning the definition of our 

polynomial interpolant, give a very simple verification of our formula for the 
interpolant, and give an extensive list of its properties. 

In ?2, we use Gauss elimination to extract from the Vandermonde matrix 
(Oa) (for the given i E 3) a monomial-spanned polynomial space of lowest 
possible degree which is correct for interpolation at E3, and prove that the same 
calculation also provides a basis for He, albeit not a very convenient one. 

In ?3, we show that Gauss elimination applied to the Vandermonde matrix, 
but carried out degree-by-degree rather than monomial-by-monomial, leads to 
a convenient basis for H8 and provides a suitable ordering of the points of E3, 
and contrast this with the algorithm proposed in [3] which corresponds to Gauss 
elimination by columns, with column pivoting without interchanges, and fails 
to provide an ordering of the points in E3. Since, in our multivariable setting, 
each degree (other than degree 0) involves several monomials, we have to replace 
the standard goal of Gauss elimination, viz. the generation of zeros below the 
pivot element, by the more suitable goal of making the entries below the pivot 
element orthogonal to the pivot element, with respect to a certain weighted 
scalar product. We believe that such a generalization of Gauss elimination may 
be advantageous in other situations where more than partial pivoting is needed, 
but total pivoting is perhaps too radical a measure. 
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In ?4, we introduce a modified power form for multivariate polynomials as 
well as a nested multiplication algorithm for its efficient evaluation. We believe 
both the form and the algorithm to be new (with the algorithm closely related 
to de Casteljau's algorithm for the evaluation of the Bernstein-Bdzier form). 

In ?5, we give a detailed description (in a MATLAB-like program) of the 
calculation of the modified power coefficients of our interpolant from the given 
data (0, f(O)), 0 e e1. 

We illustrate the interpolation procedure with three examples in ?6: The 
first explores the first nontrivial case, that of a four-point set E coplanar but 
not collinear, the second illustrates the close connection of He to polynomials 
which vanish on E1, and the third shows that the algorithm works sufficiently 
well to provide the polynomial interpolant to a smooth bivariate function at 
40 randomly chosen points. The second example also shows the surprising fact 
that our interpolant to data at the six vertices of a regular hexagon takes a 
convex combination of the given function values as its value at every point in a 
hexagon-shaped region, and makes the point that, for any e on some circle in 
the plane, our polynomial space H8 consists of harmonic polynomials. 

In ?7, we provide discussion and proofs of the various properties listed in 
? 1, and close with a short section on a generalization of our process, from point 
evaluations to arbitrary linear functionals on H. 

For alternative approaches to multivariable polynomial interpolation in the 
literature, see, e.g., their discussion in [2]. 

1. THE INTERPOLANT AND SOME OF ITS PROPERTIES 

The leading term pt of a polynomial p is, by definition, the homogeneous 
polynomial for which deg(p - pt) < degp. The construction proposed in [3] 
makes use of an analogous concept for power series, namely the initial term Ai 
of a function f analytic at the origin. This is the homogeneous polynomial 
ji for which f - Ji vanishes to highest possible order at the origin. In other 
words, fi (we call it 'f least' for short) is the first nontrivial term in the power 
series expansion 

f = f(O) + f(l) + f(2) +. 

for f in which f(j) is the sum of all the (homogeneous) terms of degree j. 
For example, with 5. x := Edl (j)x(j) the ordinary scalar product of the 

two d-vectors i and x, the exponential eo with frequency i has the power 
series expansion 

eo(x) :=eox -1 +O* x + ( x)2/2 + 

Therefore, 
(eo) I (X) = , (eo - eel )j1(X) = (O - Of).* x, 

the latter in case i :$O'. 
We also use the abbreviation 

HI :=spanff: f E H} 

for any linear space H of functions analytic at the origin, and recall from [3] 
the fact that 

(1.1) dimHI = dimH. 
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In these terms, our assignment for He is 

(1.2) HE := (expe)j, 
with expe := spanfeo: 0 E e1}. 

Thus, if E3 consists of a single point, then HI = Ho, while if e consists of 
the two points 0, Y', then He is spanned by the two polynomials 1, ( - -'), 
i.e., He consists of the (two-dimensional) space of all polynomials which are 
(at most) linear in the direction 0 - Y' and constant in any direction orthogonal 
to i - 0'. 

The construction of our interpolant also makes use of the pairing 

(1.3) (g, f) E D'g(O)Da f (0)/a! 
a 

defined, e.g., for an arbitrary function g analytic at the origin and an arbitrary 
polynomial f. The weights in (1.3) are chosen so that point evaluation at l 

is represented with respect to this pairing by the exponential eo, i.e., 

(1.4) (eo, f) = f (0), 0 E RI, A E In, 
as one readily verifies by substituting Oa = (Daeo)(O) for (Dag)(O) in (1.3). 
This justifies the following extension of the pairing to arbitrary g E expE and 
fEC(Rd) by 

(Z: w(lO)eo, f) Zw(iO)f(l), f E C. 
i6E8 OE 

This extension is well defined since any collection of exponentials with dis- 
tinct frequencies is linearly independent (see Fact (2.4) below). Consequently, 
dim expe = #E3, and 

(1.5) L w(i)gi =eo ww(i)(gi, f) = f(O) for f e C. 
i i 

The construction proposed in [3] provides the polynomial interpolant Ief 
in the form 

(1.6) Ief: E gjl 
1=1 g gl 

with g1, g2, ... , gn a(ny) basis for expe (hence, in particular, n = #E3) for 
which 

(1.7) (gi, gjl)=O X i&j. 

Since each gjl is a (homogeneous) polynomial, it is clear that Ief is a 
polynomial. But it may be less obvious why Ief = f on E3. Here is a simple 
argument. 

From (1.7), it follows that Ief is well defined and that 

(1.8) (gi, Ief) = (gi, f), all i. 

Since gl, g2, ... , gn is a basis for expe, this implies (with (1.4) and (1.5)) 
that 

Ief(O) = (eo, Ief) = (em, f) = f(O), i E E. 



COMPUTATIONAL ASPECTS OF POLYNOMIAL INTERPOLATION 709 

This also implies that the space span{g1I, ... , gnl} is a correct polynomial 
space for interpolation at 8. This space is contained in HI. But since 
dim H0 = dim exp0 = #89 = n (the first equality by (1.1)), we must have 

He = span{gl, I... , gnjl. 

In order to provide encouragement, we now list some nice properties of this 
particular map 8 3-* H0le, but postpone their verification until after the discus- 
sion of the algorithm for the construction of the interpolant. 

(1) Well defined, i.e., for any finite 8, He is a well-defined polynomial space 
and (8, He) is correct. 

(2) Continuity (if possible), i.e., small changes in e should not change fH0 
by much. There are limits to this. For example, if 8 c JR2 consists of three 
points, then one would usually choose H0 = H1' (as our scheme does). But, as 
one of these points approaches some point between the two other points, this 
choice has to change in the limit, hence it cannot change continuously. As it 
turns out, our scheme is continuous at every 83 for which Hnk C H0 Hk+I 
for some k. 

(3) Coalescence =X osculation (if possible), i.e., as points coalesce, Lagrange 
interpolation approaches Hermite interpolation. This will, of course, depend 
on just how the coalescence takes place. If, e.g., a point spirals in on another, 
then we cannot hope for osculation. But if, e.g., one point approaches another 
along a straight line, then we are entitled to obtain, in the limit, a match at that 
point also of the directional derivative in the direction of that line. 

(4) Translation invariance, i.e., V(p E H0, a E Rd) p(a + *) E H0. This 
implies that H0 is D-invariant, i.e., is closed under differentiation. 

(5) Scale invariance, i.e., V(p E He, a E IR) p(a ) E H0 . This is equivalent to 
the fact that He is spanned by homogeneous polynomials. Note that (4) and 
(5) together are quite restrictive in the sense that the only finite-dimensional 
spaces of smooth functions satisfying (4) and (5) are polynomial spaces. 

(6) Coordinate system independence, i.e., an affine change of variables i 
A?+c (for some invertible matrix A) affects H0 in a reasonable way. Precisely, 

V{invertible A E DRdXd C E Rd} HAI+C = H0 A 

This implies that He inherits any symmetries (such as invariance under some 
rotations and/or reflections) that e might have. This also means that He is 
independent of the choice of origin. In conjunction with (5), it also implies that 
He is independent of scaling of 8. Hence, altogether 

Hr0+c = He Vr :O ,c E ld. 

Finally, each p E H0 is constant along any lines orthogonal to the affine hull 
of 8, i.e., 

H0 C fl(affine(E)), 
with affine(8) := {I E oE9w (6): ZOw (i) = 1 } - 

(7) Minimal degree, i.e., the- elements of He have as small a degree as is 
possible. Here is the precise description: For any polynomial space P for 
which (8, P) is correct, and for all j, dim P n H1 < dim H0 n Hj. This 
implies, e.g., that if (8, Hk) is correct, then H0 = H~k . In other words, in the 
most heavily studied case, viz. of 8) for which Hnk is an acceptable choice, our 
assignment would also be Hk - 
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(8) Monotonicity, i.e., E1 c e' =e HIe c HIe1. This makes it possible to 
develop a Newton form for the interpolant. Also, in conjunction with (7) and 
(9), this ties our scheme closely to standard choices. 

(9) Cartesian product =e tensor product, i.e., He8><8 = He 0 H8e . In this way, 
our assignment in the case of a rectangular grid coincides with the assignment 
standard for that case. In fact, in conjunction with (8), we can conclude that 
we obtain the standard assignment even in the case that E1 is a 'lower' set of a 
rectangular grid of points (see ?7). 

(10) Associated differential operators. This unusual property links polyno- 
mials p which vanish on E1 to homogeneous constant-coefficient differential 
operators q(D) which vanish on H8e. The precise statement is that such q(D) 
vanishes on H8 if and only if the homogeneous polynomial q is the leading 
term pt of some polynomial p which vanishes on E1. We expect this property 
to play a major role in formulae for the interpolation error. 

(11) Constructible, i.e., a basis for H8 can be constructed in finitely many 
arithmetic steps. 

This list provides enough details to make it possible to identify H8 in certain 
simple situations directly, without the aid of the defining formula (1.2). For 
example, if #E1 = 1 , then necessarily H8 = o0 (by (7)). If #E = 2, then, by (6) 
and (7), necessarily He = Hl(affine(e)) . If #E1 = 3, then H8 = Hk(affine(e)), 
with k :- 3 - dim affine(El) . The case #E = 4 is the first one that is not clear- 
cut. In this case, we have again 

H8 = Hk(affine(e)), k 4 - dim affine(E), 
but only for k = 1, 3. When affine(El) is a plane, we may use (6) to normalize 
to the situation that E1 c lR2 and E- = {O, (1, 0), (0, 1), 0}, with 0, offhand, 
arbitrary. Since H1 is the choice for the set {0, (1, 0), (0, 1)}, this means that 
He8 = l + span{q} for some homogeneous quadratic polynomial q. While 
(2) and (6) impose further restrictions, it seems possible to construct a suitable 
map 0 |-- q in many ways so that the resulting E 1-3 H8 satisfies all the above 
conditions, except conditions (8) and (10) perhaps. (See ?6 for our choice 
for q = qo.) At present, we do not know whether there is only one map 
E1 1- H8 satisfying all conditions (1)-(9). But, addition of condition (10) 
uniquely determines the map. 

Of course, we did not make up the above list and then set out to find the 
map E 1-3 He. Rather, we came across the fact that the pair (13, (expe) ) is 
always correct, and this started us off studying the assignment He := (expE)). 

2. THE CHOICE OF P PROVIDED BY ELIMINATION 

In this section, we provide further insight into our particular assignment 
He = (expe), by comparing it with a more straightforward assignment which 
is provided by Gauss elimination applied to the Vandermonde matrix for E. 
This also should help in the understanding of the algorithm for the construction 
of Ie described in the next section. 

In the absence of bases for the space 

:= H(Rd) 

of all polynomials in d variables more suitable for calculations with multivari- 
able polynomials, we deal here with the power form, i.e., we express polynomials 
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as linear combinations of the powers 
( ) - ) R: X l_* X, := Xa) ... X a(d) I Xd 

The polynomial p Za( )ac(a) on Rd matches the function f at the point 
set E if and only if its coefficient sequence c := (C(a))aezd solves the linear 
system 
(2.1) V?= Me, 
with 
(2.2) V:= (Oa),, aeZd 

the Vandermonde matrix for E. Thus a search for polynomial interpolants to 
f at e is a search for solutions C: Zd -* R of (2.1) of finite support (i.e., with 
all but finitely many entries equal to zero). 

Actual calculations would force us to order the points in E and the indices 
a E Zd . It is more convenient, though, to let the 0 E e and the a E Zd index 
themselves for the time being. Thus V is a linear map taking functions on Zd 
to functions on E. Its columns correspond to a E Zd, its rows to 0 E E. 
(2.3) Proposition. The Vandermonde matrix V (see (2.2)) is offull rank. 
Proof. One way to see this is to observe that (a(O))Oee V = 0 implies that 

oEe a(O)eo = 0 (since Oa = (Daeo)(O)), and thus to rely on the following 
(2.4) Fact. Any collection of exponentials with distinct frequencies is linearly 
independent. 
Proof. The proof is by induction since the linear independence is obvious when 
#E3 = 1 . If #E3 > 1 and s := ZeoE a(O)eo = 0 with all a(o) :$ 0, then also 
(Dy - c)s = Eo((y . 0) - c)a(O)eo = 0 for any particular y. Since the 0 are 
distinct, we can choose y and c so that y * 0 = c for a particular 0 E E3 while 
y * O :$ c for at least one 0 E E. Thus Z.,((y * 0) - c)a(O)eo = 0 is a sum 
of the same nature but with one fewer summand, hence with all its coefficients 
zero by the induction hypothesis, hence at least one of the a(o) must be zero, 
contrary to our assumption. 5 

Elimination is the standard tool provided by Linear Algebra for the determi- 
nation of the solution set of any linear (algebraic) system. Elimination classifies 
the unknowns into bound and free. Assuming the coefficient matrix to be of full 
rank (which our matrix V is by Proposition (2.3)), this means that each row is 
designated a pivot row for some unknown, which thereby is "bound", i.e., com- 
putable once all "later" unknowns are determined. Any unknown not bound is 
"free", i.e., freely choosable. Standard elimination proceeds in order, from left 
to right and from top to bottom, if possible. In Gauss elimination with partial 
pivoting, one insists on proceeding from left to right, but is willing to rearrange 
the rows, if necessary. Thus, Gauss elimination with partial pivoting applied 
to (2.1) (written according to some ordering of the i E E) and the a E Ed) 
produces a factorization 

LW= V, 
with L unit lower triangular and W in row echelon form. This means that 
there is a sequence 81,B2, ...8 , - 3n which is strictly increasing, in the same 
total ordering of Zd that was used to order the columns of V, and so that, for 
some ordering {'h, , ... , on} of E) and for all j, the entry W(%j, /3) is 
the first nonzero entry in the row W(Qj,: ) of W . 
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(2.5) Proposition. Let LW = V be the factorization of V provided by Gauss 
elimination with partial pivoting. Specifically, let fl1, ,82, ... , /1n be the se- 
quence, strictly increasing in the same total ordering of Zd that was used to 
order the columns of V, for which, for some ordering {10, 02, .O , nI} of e 
andfor all j, the entry W(Qj, /38) is the first nonzero entry in the row W(Oj, 
of W. Then P := span(( )f)fl is correct for interpolation at e). Moreover, 
if the columns of V are ordered by degree, then P is a polynomial space of 
smallest possible degree which is correct for e3. 
Proof. By assumption, the square matrix 

U := (W(Oi , l8j))q,j=l 

is upper triangular and invertible, and so provides the particular interpolant 

Zj( )fi'a(i), whose coefficient vector 

(2.6) a:= (LU)-1 (f(0'), *-- (n)) 

is obtainable from the original data fie by permutation followed by forward- 
and back-substitution. 

Now recall that Gauss elimination determines the next pivot column as the 
closest possible column to the right of the present pivot column. This means 
that each /38 is chosen as the smallest possible index greater than /3j1 , in 
whatever order we choose to write down the columns of V. Consequently, the 
polynomial space 

P := span(( )f)71 

selected by this process is spanned by monomials of smallest possible exponent 
(in the ordering of Zd used). In particular, assume that we ordered the a by 
degree, i.e., so that 

a<'8 =:3 1a1 ' 1,81, 

with 
jai:=a(l)+ +a(d) 

the customary abbreviation for the length of the index vector a. Then P is of 
smallest degree (since elimination applied to a matrix of full rank determines 
the shortest initial segment of full rank of that matrix). n 

Now note that the polynomial space P constructed in the proposition may 
well change drastically in response to a simple change of variables. For example, 
if e = {(0, 0), (1, 0)} c R2 , and we use the standard ordering 

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), ... 

for Z2 then for any rotate AE3 of e3, elimination would provide the space 
span{( )0, ( )1,0}, except for rotation by 900, in which case span{( )O, ( )0 1} 

would be selected. 
This simple example also illustrates that the sequence fl1, ,82, ..., fn need 

not turn out to consist of consecutive terms, even if we ordered the a by 
lal. (Facts like this have prevented the development of a simple theory of 
multivariate polynomial interpolation.) Rather, elimination has to face the 
numerical difficulty of deciding when all the pivots available for the current 
step in the current column are 'practically zero', in which case the pivot search 
is extended to the entries in the next column (and in any row not yet used as 
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pivot row). But this can also be viewed positively. Just as partial row pivoting 
has as its goal the 'smallness' of the factors L and U, so the additional freedom 
of column pivoting allowed here provides further means for keeping the factors 
L and U 'small'. The smaller these factors, the better is the condition of 
the corresponding basis (( )f%) for the polynomial space P selected, when 
considered as a space of functions on e3. 

(2.7) Theorem. Assume the columns of the Vandermonde matrix V = (Oa) or- 
dered by degree and let LW = V be the factorization of V provided by Gauss 
elimination with partial pivoting. Specifically, let fl1 5 ,2, ... ., .n be the strictly 
increasing sequence for which, for some ordering {01, 02, ... , OnI} of e and 
for all j, the entry W(Qj, /38) is the first nonzero entry in the row W(j,:) of 
W. Then hi := Zjal=ljl W(O,, a)( )a/a!, i = 1, ..., n, is a basis for He. 

Proof. Since V(O, a) = a = (Daeo)(O), and W L-1 V, it follows that each 
gi := Ea W(Ai, a)( )a/a! is in expe, hence hi := Eial=luil W(Ai, a)( )a/a! = 

gil is in H8 = (expe)>. Since W is in row-echelon form (specifically, 
W(Oi, /8i) is the first nonzero entry in the row W(Oi, :) and the sequence 
,/i is strictly increasing), we know that h,, h2, ... , hn is linearly independent, 
hence a basis for He, since dim H8 = n by (1.1). 5 

Thus, the assignment e 1 H8 proposed in [3] turns out to differ from the 
naive assignment made in Proposition (2.5) in only one (important) detail: In- 
stead of the space spanned by the particular monomials ( )fl1 singled out by 
elimination, we take the space spanned by the least terms gil of the functions 
gi := - W(Ai, I )( )a/a!. But these particular g, , g2, ... , gn do not in gen- 
eral satisfy (1.7). To obtain a basis gl, g2, ... , gn for expe satisfying (1.7), 
we carry out elimination, not monomial-by-monomial, but degree-by-degree. 

3. ELIMINATION BY DEGREE 

We proposed in [3] a particular algorithm for the construction of the basis 
gl, g2, ... , gn for expe satisfying (1.7) and needed for (1.6). But, with the 
details of Gauss elimination recalled in the preceding section in mind, it seems 
more efficient to construct (as already proposed in [2]) the gi by applying Gauss 
elimination with partial pivoting to the matrix 

V:= (Ok) 

obtained from the Vandermonde V = (Oa) by treating all entries of a given 
degree as one entry. We have written V instead of V to signify this alternate 
point of view. Thus V has its rows indexed by 0 E e as before, but its columns 
are indexed by k = 0, 1, 2, . Correspondingly, 

ok = (Oa)1 | k- 

Since the entries of V are vectors, rather than just numbers, we cannot hope 
to 'eliminate entries'; we can only hope to make all the entries in the pivot 
column below the pivot row orthogonal to the pivot entry. Because of (1.3), the 
relevant scalar product is 

(3.1) (a, b)k Z a(a)b(a)/a! 
Ial=k 
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when eliminating in column k of V. In order to keep the notation uncluttered, 
we will use the abbreviation 

(W(O, k), W(O, k)) := (W(O, k), W(O, k))k, 

with W any matrix which, like V, has vectors indexed by {a e Zd: jai = k} 
as the entries in its kth column. 

It follows that a given column may be pivot column for several pivot rows. 
Still, the overall process of Gauss elimination with partial pivoting applied to 
a matrix like V is clear: Let W be the 'working array' which initially equals 
V. At the jth step, we look for the smallest kj > k-11 for which there is a 
nontrivial entry of W in column kj at or below row j. Then we find a largest 
such entry (relative to the size of the corresponding entry or row of V) and, 
if necessary, interchange its row with row j of W to bring it into the pivot 
position W(Qj, kj) . Then we subtract the appropriate multiple of the pivot row 
W(Qj,:) from all subsequent rows in order to make W(Oi, kj) orthogonal to 
W(Oj, kj) for all i > j. 

The result is a factorization 

LW=V, 

with L again unit lower triangular, but W is in row-echelon form in the follow- 
ing sense. There is a nondecreasing sequence k1, k2, ... , k, and some ordering 
{'hl 02, ... , on} of t3 so that, for all j, the (vector-)entry W(Qj, kj) is the 
first nonzero entry in the row W(%j,:) of W. In other words, the matrix 
(W(Oi, kj))7 ,j= is block upper triangular, with nonzero diagonal entries. Note 
that this matrix need not be upper triangular, since the sequence k1, k2, . k. , 
need not be strictly increasing. But there has to be orthogonality of W(Oi, kj) 
to W(Qj, kj) when ki = kj and i $ j. Explicitly, the square matrix 

(3.2) U:= ((W(Oi, kj), W(Oj, kj)))71 y1 

is upper triangular and invertible. Consequently, with UG:= W, the matrix 

((G(Oi, kj), G(Oj , kj)))'in =l 

is diagonal and invertible. For, factoring out the upper triangular matrix U is 
equivalent to 'backward elimination', i.e., to the calculations 

for j= n, n- 1,..., 1, do: 
W(Oj, :) +- W(Q, :)/U(j, i) 
fori= 1,...,j-1,do: 

W('h, :) - W('i, :)- U(i, j)W(Oj, :) 
end 

end 

in which the jth step enforces orthogonality of the pivot element in row j to 
the elements above it in the pivot column, without changing the orthogonalities 
already achieved in subsequent columns, and without changing anything in the 
preceding columns. Thus, in terms of the weighted scalar product 

(3.3) (a, b) := Z,(a, b)k = Z a(a)b(a)/a! 
k a 
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for sequences a, b: Zd --* R, we have 

(3.4) (G(Oi, : ), Gk, (Oy, : ) i,j/U( j, i), i, j =1, n, 

with Gk given by 

Gk(, a G( , ),jaj = k 
G0: c := {otherwise. 

With this, let 

(3.5) gi := j( )a /a! GAQ, a). 
a 

Then 

(3.6) Z(LU)(i, j)gj = eQ,, all j, 
I 

since LUG = V= (Daeo,(0))i, a. Further, 

(3.7) gil= Z ( )a /a! G(i0, a) = Z( )a/(x! Gk1(ls, a), 
Ial=k, a 

and we conclude from (3.4) that 

(3.8) (gi, gj) = 3i, / U( j,), i, j = 1, ...,n. 

Since, by (3.8), g1, g2, ... , g, is linearly independent, (3.6) implies that 
g1, g2, ... , gn is a basis for exp8. But (3.8) also implies that g1I, ..., gn 
so constructed is linearly independent, hence a basis for He by (1.1). 

This proves 

(3.9) Theorem. Thefunctions gi defined by (3.5) provide a basis for expe which 
satisfies (1.7), and the corresponding gil form a basis for He. 

(3.10) Corollary. Let 

(3.11) a := diag(U)(LU)-'((0)...,f(Oj) PO), 

with L, U, and 1h, 02, ... ., on determined during Gauss elimination with par- 
tial pivoting applied to V as described above. Then, with gil as given by (3.7), 

Ief = S 
gjja(j) 

is the unique interpolant from He to f on e. 
Proof. The function q := Ej gja(j) is in H-e by Theorem (3.9). Further, 
from (3.8), (gj, q) = a(j)/U(j, j) . Therefore, from (3.6) and (3.11), 

q(0i) = (eo, q) = 5LU(i, j)(gj, q) 

= E LU(i, ij) (LU) -'(i, r) f(Or) = f(Oi). 
j r 

In effect, the multiplication in (3.11) by the diagonal matrix diag(U) ac- 
counts for the division by (gj, gjj) in (1.6), as the latter number is I/U(j, j), 
by (3.8). 5 
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It is worth noting that the factoring out of U from W will not change the 
pivot entries W(Qj, kj), since U(i, i) = 0 if ki = kj and i :$ j, except for 
the normalizing division. In other words, 

Gk, = Wk1/U(i, i) 

(with Wk defined entirely analogously to Gk), showing that the factoring out 
of U from W need not be carried out, unless one is interested in the gi rather 
than the gil . On the other hand, formation of U is essential for the calculation 
of the coefficients of the interpolating polynomial. 

In the language introduced in this section, the algorithm for the calculation 
of suitable g,, g2, ... , g from fi := eo, j = 1, ..., n, proposed in [3] 
amounts to Gauss elimination with column pivoting applied to V, except that 
no columns are actually interchanged. Rather, at the jth step, one looks for 
the left-most nonzero entry in the jth row of the working array W, say the 
entry W(Qj, kj) , then uses the jth row to make all entries W(oi, kj) for 
i $ j orthogonal to W(Qj, kj). This will not spoil orthogonality of W(oi, ki) 
to W(0ir, ki) for r :$ i and i < j achieved earlier, since either ki < kj, 
hence W(Qj, ki) = 0, or ki > kj, hence W(Qj, kj) is trivially orthogonal 
to W(Oi, kj) = 0, or ki = kj, hence W(%j, kj) is already orthogonal to 
W(O~i, kj). Thus one obtains a factorization 

AW=V, 

with A invertible and W in reduced row-echelon form in the sense that, for 
some sequence k1, k2, ...- kn, 

(W(O~i, kj), W(O~j, kj))k, = O ' i Aj. 
This implies that the functions g1, g2, ... , gn defined by 

gj := Z( )a/a! W(oj , a) 
a 

satisfy (1.7), hence the corresponding gjl must be a basis for He (by the 
reasoning used earlier). It is not obvious without recourse to the results from 
[3] that the two sequences g1 , ..., gn, produced by the two algorithms span 
the same space. 

The algorithm outlined in this section seems preferable to the one from [3] 
not only because it is closer to a standard algorithm but also because it provides a 
ready means for ordering the points of E1 for greater stability of the calculations. 

Some of the finer computational details are taken up below, after a short 
section on a particularly suitable polynomial form. 

4. NESTED MULTIPLICATION FOR THE MODIFIED POWER FORM 

We know only two polynomial forms readily available for the representation 
of polynomials in several variables, the power form and the Bernstein-Bezier 
form. The calculations above are in terms of the power form 

P = Z( )aDap(O)/a!, 

hence we stick with that form here, particularly since we are not concerned 
here with the Bemstein-Bezier form's major strength, the smooth patching of 
polynomial pieces (see, e.g., [1]). 
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It is only prudent to use the shifted power form, i.e., to write 

P = Z( - c)aDap(c)/a!, 

for some appropriate center c, e.g., 

c=c0:= / . 
AEc 

Equivalently, we assume that E9 has been shifted at the outset by its center ce . 
It turns out to be simpler to use the modified power form 

(4.1) p = E( )c, lak Dap(O)Ilal!, 

with (I la) = l!/a! the multinomial coefficients. There are two reasons. 
(i) It is easy to program and use the following multivariable version of nested 

multiplication (or Horner's scheme): 

(4.2) Proposition. If 

Dap(O)/lal!, ja! = degp, 

(4.3) c(a) := Dap(O)/laI! 
+ Ed~ xic(E + ii), 

jai = degp - 1, degp - 2, ...,O 

with ii the ith unit vector, p E l(Rd), and x E Rd, then c(O) = p(x). 
Proof. Indeed, it follows that 

c(O) = E nx aDap(O)/laI!, 

acl<degp 

with n,,, the number of different increasing paths to a from the origin through 
points of Zd . This number is na = (II), hence c(O) = p(x), by (4.1). n 

In effect, it is possible to evaluate a multivariable polynomial p from its 
normalized Taylor coefficients (Dap) (0)/al ! without the (explicit) computation 
of multinomial coefficients. 

(ii) The information about gj computed by the algorithm outlined in the 
preceding section readily provides the numbers Dcgj (0) (see (3.5)), hence the 
calculation of the modified power form for Ief, i.e., of the normalized Taylor 
coefficients (DaIef)(O), from the matrix G and the vector (LUU)J- Ie can be 
accomplished without generation and use of the multinomial coefficients. 

The close similarity to de Casteljau's algorithm (see, e.g., [1]) for the evalu- 
ation of the Bernstein-Bdzier form is actually not surprising, for the following 
reason. The Bernstein-Bezier form 

X ~ I:E (4(X)) ( C(,q) 

IflI=k 

describes a polynomial of degree < k in terms of the d + 1 linear polynomials 
Xt defined by the identity 

Z tp(t)=p forallpeJI', 
tET 
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with T c iRd in general position. The de Casteljau algorithm for its evaluation 
at some x consists of the calculations 

C(A) := t(x)C(f + it), IJ3 = I, 
teT 

for j = k - 1, k - 2, ..., 0, with the resulting c(O) the desired value at x. 
While the vector 4(x) provides the barycentric coordinates of x with respect 
to the point set T, no use is made in the de Casteljau algorithm of the fact that 
Ete T Xt (X) = . Thus the calculations 

d 
c(a) := xic(a + ii), Ici = j, 

i= 1 

for j = k - 1, k - 2, ...,O and started from given c(a) with jal = k will 
provide the number 

EX (, a I 
C(a). 

IaI=k 

The full algorithm above merely combines appropriately the steps common to 
de Casteljau applied to the terms in (4.1) of different degrees. 

5. ALGORITHMIC DETAILS 

We give here a (somewhat informal) MATLAB-like program (see, e.g., [6] for 
language details) for the construction of our interpolant in order to document 
the simplicity of the actual calculations needed. In this 'program', we use the 
following conventions: 

V and W denote the matrices V and W, respectively. In particular, W(i , k) is a 
vector with (kd l 1) entries, indexed by {e E Zd: aI = k} * This is decidedly not 
allowable in present-day MATLAB, but convenient here, as it avoids discussion 
of the (important technical) question of the best way to order the index set 
{ EZd: ja=k}. 

Correspondingly, for two vectors a and b (such as W(i, k), W(jk)) indexed 
by {& e Zd: IjacI=k}, (a, b) denotes the (scaled) scalar product 

(5.1) (ab):= ( a(a)b(cI)( ) 

jal=k 

related to (3.1) (with k = k). All matrices mentioned in the 'program' other 
than V and W are proper MATLAB matrices, i.e., have scalar entries. 

Further, we use a *--- b to indicate that a is to be overwritten with the 
contents of b, and use an occasional English word or two to describe an action 
whose details seem clear. 

We borrow from MATLAB the notations: (i) eye (n, n) for the identity matrix 
of order n; (ii) ones (m, n) for the matrix of size m x n with all entries equal to 
1; (iii) zeros (m,n) for the matrix of size m xn with all entries equal to 0; (iv) 
a:b for the vector with entries a, a + 1,..., a + m, with m the natural 

number for which a + m < b < a + m + 1; (v) A*B for the matrix product of the 
matrices A and B; (vi) standard logical constructs like (for j = 1: n, ... ,end), 
and (if ...,...,end); (vii) the construct (while 1,... , if ...,break, end, 
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... , end), which is a loop exited only through the break; and (viii) the construct 
[m,i] +--max(a) to provide m:= a(i) := max a(j). 

% INPUT: E) ={l l..1 n}, fletol 
k*-- 0 
V(: ,k) +-- ones(n,1) ; W(:,k) +-- V(: ,k) 
L*--eye(n,n); U*--zeros(n,n); K*--zeros(1,n) 
for j=l:n 

while 1 
[m,i] *--max(W(i,k), W(i,k))/(V(i,k),V(i,k)): i>j-1 

if m>tolbreak, end 
k --k+1 

V(:,k) -- from V(:,k-1) and E) 
W(:,k) *--L-*V(:,k) 

end 
if i>j, interchange rows i and j, end 
K(j) *-- k 
for i=1:j, 

U(i,j) *-- (W(i,k),W(j,k)) 
end 
for i=j+l:n 

L(i,j) --(W(i,k),W(j,k))/U(j,j) 
W(i,k) -- W(i,k)-L(i,j)*W(j,k) 

end 
end 
W +-- U-1 *W 

f*--properly permuted fle 
a+-- diag(U)*U-1*L-1*f 
kmax +-- max(K); dk --([O ]+d-1) 

coefs+--zeros(kmax+l,dk(kmax)) 
for j=l:n 

range=1:dk(K(j)) 
coefs(K(j),range)*--coefs(K(j),range) + a(j)*W(j,K(j)) 

end 
%OUTPUT: coefs 

The output provides the coefficients c(a) = coefs(lal, a) for the modi- 
fied power form of the interpolant. The needed weights w(a) := (I&l) for the 
(scaled) scalar product (5.1) are integers and are conveniently generated from 
their recurrence relation 

d 

(5.2) w(a) = Zw(&-ii) 
i=1 

each time k is increased by 1, using the initial value 

w(O) = 1 

and the side conditions 

W(a) = 0. a 0 Zd. 
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The algorithm does require a sensible ordering of the index set {a: jal = k} 
in order to facilitate (i) use of (5.2); (ii) the efficient calculation of the entries 
of V(O, k) from those of V(O, k - 1), e.g., via 

(5.3) V(O, a) = OiV(S, a - ii), with a s.t. a(j) = 0 for j < i; 
and for i= 1, ..., d; 

and (iii) the use of (4.3). We have used the inverse lexicographic ordering of 
the a. 

The output does depend on the choice of the tolerance tol. In exact arith- 
metic, we could choose tol = 0. 

(5.4) Proposition. If the above algorithm is run in exact arithmetic with tol = 0, 
then the while-loop is never repeated. 
Proof. In exact arithmetic and with tol = 0, the algorithm provides a homo- 
geneous basis for lle, by Theorem (3.9), and the polynomial degrees of these 
basis elements are the numbers k appearing in the 'program'. Under certain 
conditions, this number is increased by 1 in the while-loop. If a second in- 
crease were necessary for the current j, then it would follow that there is a gap 
in the degrees of some homogeneous basis for lIe, and this would contradict 
the D-invariance of Ie (see property (4) in ?1). El 

In finite-precision arithmetic, the choice of tol is more delicate. It should 
reflect the number of digits carried during the calculations. As tol is increased, 
we can expect L and U to be of smaller size, but may eventually not obtain a 
polynomial space close to Ie . This can be of considerable numerical advantage 
in the case that a zero tolerance would lead to an unacceptably large U. This 
is analogous to the common practice of treating a cluster of (simple) zeros of a 
function numerically as one zero of appropriate multiplicity. 

6. EXAMPLES 

(6.1) Four points in the plane. We start with the simplest nontrivial 0, viz. a 
e made up of four points whose affine hull is a plane. As already pointed out 
in ?1, we may assume without loss that 0 = {0, il, i2, (U, v)}, with i1 the 
jth unit vector in 1R2. With this ordering of the points, and the lexicographic 
ordering for the a, the Vandermonde matrix becomes 

1 0 00 0 ? ... 

V- 
I I 0 1- 0 0.. 
I 0 1 0 0 1 .. 

2 2 

Elimination (without pivoting) with the scaled scalar product (5.1) generates the 
matrices 

1 0 0 0 
1 I1 0 0 L= j1 0 1 00 

I 0 0 0 0 0 \ 

? 1 u 1 0 u ... 
_ 0 1 0 0 1 .. 

n n n 12 _U UV Vdq2- _ ... 
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Hence, 
1 0 0 0u 

U- O 1 0 u(u-l)l 
0 1 v(v-l) 

where w (u2 + V2)2 - 2(u3 + v3) + (U2 + v2) . This gives 
1 0 0 0 0 0 . 

G = 1 0 1 - U2(U- 1)2/W -u2(u - 1)v/w -u(u - 1)v(v - 1)/w 
0 o 1 -u(u - 1)v(v - 1)/w -uv2(v - 1)/w 1 - v2(V - 1)2/W ... 

O 0 0 u(u- l)/w uv/w v(v- 1)/W * / 

The resulting basis for H8O consists of 

g11=()0, g2,=()1'0, g31= )0',1 

4= ( )2' ?U(U - 1)/(2w) + ( )I 'uv/w + ( )0' 2V (V -)/(2W), 

with (gi, g41) = (1/wA)4. This illustrates the fact that, for the purpose of 
constructing the interpolant, there is no need to construct the matrix G. 

Even for this simple example, the resulting formulae are not particularly 
simple or pretty. On the other hand, there is no suggestion here to carry out 
such calculations by hand. On the third hand, it is easy to see in this simple 
example what happens as points become collinear. E.g., if v -* 0, then g41 
simplifies to 

g4= ( )2, 0/2(u(u - 1)), 

i.e., HO now contains F12(IR x {0}), as it should. But this works out only if 
u 0 {0, 1}. If (u, v) -- 0 or (u, v) -* (1, 0), then the fourth point (u, v) 
would be approaching the first or second point in E3 and the limiting lIE now 
will depend on just how this approach is made. 

(6.2) Hexagon points. Because of the inherent symmetries, the formula for in- 
terpolation at the vertices of a regular hexagon is very pretty indeed. Assume 
without loss that 

E={Q := (cos(tj), sin(tj)): j= 1, ...,6}, 

with t 2:= 27rj/6, all j. 
Since dim L12(1R2) = 6, we expect HO = 2H2(12R2) for the generic 6-point set E 

in the plane. But the hexagon points lie on the unit circle, i.e., the polynomial 

p := 1 _ ( )2,0 _ ( )0,2 E 112()2 

vanishes on 0, hence (9, H2(1R2)) cannot be correct. Further, by property 
(10) in ?1, pT must be orthogonal (in the sense of the pairing (1.3)) to He. 
On the other hand, any five of these six points are generic, i.e., they are not 
collinear. Hence, 

H8e = (H12 E3 span(p1)) + span(q), 
with the orthogonal complement (H2 espan(p)) of span(p) in H2 taken in 
the sense of the pairing (1.3), and with q a certain homogeneous third-degree 
polynomial. 

Here is one way to determine this q: Consider the interpolant Ief to data 
f(%j) = (-1)1, all j. There are three lines through the origin not containing 
any of the interpolation points but such that reflection across that line leaves 



722 CARL DE BOOR AND AMOS RON 

9 unchanged. By property (6), such reflection must also leave HIe unchanged. 
On the other hand, it will map the data to their negative. This implies that 
such reflection must map Ief to its negative, consequently Ief must vanish 
along each of these three lines. Therefore, Ief vanishes to second degree at the 
origin, hence is a homogeneous cubic, hence q = Ief (since q is determined 
only up to scalar multiples, anyway). In particular, rotation by 7r/3 maps q to 
its negative. 

Another way is to note that ' is unchanged under rotation by 7r/3, hence 
such rotation must map q to rq for some real r for which r6 = 1. The choice 
r = 1 would lead to the conclusion that q is constant on ), therefore constant 
throughout, by uniqueness of the interpolant, and this would contradict the fact 
that q is a third-degree polynomial. Thus, necessarily, r = -1, i.e., rotation 
by 7r/3 maps q to its negative. This is the same conclusion reached in the 
preceding paragraph. 

It follows that 
q = ( )3,0 - 3( )1,2 = Re z3, 

with z =( )1,0 + i( )0 1 the complex independent variable. This is related to 
the fact that Ie f is the real part of the (complex) Lagrange interpolant to the 
data (f(Qj))j at the six roots of unity in the complex plane. (Since z3 takes 
the value (-1)' at the point Q (1) + iOQ(2), z H-+ z3is an interpolant from 
15 (C), therefore the interpolant.) 

As a matter of fact, property (10) implies that, for any ' on any particular 
circle, LI0 must consist of harmonic polynomials, since then ' is mapped to 
zero by some polynomial whose leading part is ( )2, 0 + ( )0, 2 . In particular, for 
any six-point set ' on a circle, the homogeneous cubic polynomial in LI0 is a 
linear combination of Re z3 and Im z3. 

The three heavy lines in Figure (6.3) show the zeros of the (real) Lagrange 
polynomial 16 for our interpolation at the hexagon points. This meansthat 16 
is the unique polynomial in HIe which is 1 at (1, 0) and 0 at the other five 

-0.5 

-1.5 - -0.5 0 03 1 1.5 

FIGURE (6.3) 
The Lebesgue function for interpolation at the hexagon points 

is 1 on the entire central portion 
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points. From the figure (and the fact that 16(1, 0) = 1), we conclude that 16 is 
positive near 0. Since He is invariant under rotation by 7r/3, the remaining 
five Lagrange polynomials lj, j = 1, ... , 5, are obtained from 16 by rotation 
by the appropriate multiple of 7r/3, hence are also positive near the origin. 
Since the Lagrange polynomials sum to the constant function 1, this implies the 
following surprising fact. 

(6.4) Proposition. In the hexagonal domain outlined by the zero sets of the lj, 
the value of the interpolant is a convex combination of the given function values. 

On the other hand, as the radius of the circle shrinks to zero, the interpolant 
Ief approximates f near 0 only to first order, since the process fails to repro- 
duce all of 112 . In order to remedy this, we enlarge 0 by adding the origin to 
it. This is bound to destroy the positivity near the origin of the Lagrange poly- 
nomials for the other points (and makes 17 := 1 - ( )2,0 - ( )0,2 the Lagrange 
polynomial for the seventh point, with the remaining Lagrange polynomials 

100 

o 
0 20 40 60 80 100 

FIGURE (6.5) 
Contour lines, for values 1, 1.05, ... ., 2, of Lebesgue function for 

interpolation at hexagon points and their center 

4C , . 40 
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FIGURE (6.6) 
Contour lines for error in interpolation at 40 random points 
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obtained from those for the hexagon points by subtraction of 17/6). But the 
Lebesgue function for the resulting interpolation process, i.e., the sum of the 
absolute values of all the Lagrange polynomials, stays remarkably close to 1 near 
the origin. Figure (6.5) shows the level lines of the Lebesgue function, for the 
values 1:.05:2. This shows that, on the unit circle, the Lebesgue function does 
not exceed 1.5. 

(6.7) Random points. In this example, we chose 40 points in the square [0..1]2 
at random as interpolation points, and constructed an interpolant at these points 
to the function x ?- exp(-x2 - x2) . Figure (6.6) shows ten level lines (corre- 
sponding to ten equal values between the minimum and the maximum) of the 
error in the resulting interpolant. In particular, Figure (6.6) makes clear that the 
error is close to zero in an area around the interpolation points. The absolutely 
largest error turned out to be 3 x 10-4 . We found that this example was not at 
all isolated. 

7. VERIFICATION OF THE LIST OF PROPERTIES 

In this section, we verify the various properties asserted for our interpolation 
scheme in ? 1. 

The first eight properties are either evident from our definition of He or are 
dealt with in detail in [3]. But some of the consequences mentioned still require 
proof. 

We begin with a derivation of the affine hull property 

HE C H(affine(e)). 

First we give a proof based on property (6), and then follow this with shorter 
proofs based on the stronger properties (9) and (10). 

After a rigid motion, we may assume that affine(e) = Rs x {0}. Since HE is 
invariant under any linear change of variables which leaves e unchanged, it is 
in particular invariant under any scaling of the arguments s + 1, ... , d . This 
implies that HE must contain any polynomial p which does not depend on its 
arguments s + 1, ... , d and agrees on Rs x {0} with some polynomial from 
H8 . On the other hand, the restriction map P PIRs- X {o} must be 1-1 on HE, 
since e c Rs x {0} and the restriction map p F-> Pie is 1-1. 

The affine hull property can also be derived from property (9) con- 
cerning tensor products, since, after that linear change of variables which makes 
affine(e) = Rs x {0}, we have e = Os x {0}, with e C Rs and {0} c Rds. 

Finally, the affine hull property can also be written 

Dy (H1e) = 0 for all y I affine(e), 

i.e., for all y for which the linear polynomial x F-* y * x is constant on e. 
Thus this property is a very special case of property (10). 

Next, we note that the minimal-degree property (7) is equivalent to the prop- 
erty 

(7') Degree-reducing, i.e., for every polynomial p, deg Iep < degp. 

(7.1) Proposition. Let (X9, P) be correct, with P a polynomial space, and let 
I be the corresponding interpolation map. Then P is of minimal degree if and 
only if degIp < degp for all p c H. 



COMPUTATIONAL ASPECTS OF POLYNOMIAL INTERPOLATION 725 

Proof. Assume that (9), P) is correct and that p E 11. Extend Ip to a graded 
basis B for P, i.e., a B for which B n Hlj is a basis for P n rj for all j . 
Since (9, P) is correct, it follows that B must be linearly independent over 
0. Since Ip = p on 9, it follows that (B\Ip) Up is also linearly independent 
over 9, hence its span, Q say, is also correct for interpolation on 93. If now 
deg Ip > degp =: j, then it follows that dim Q n Hj > dim P n Hj, hence P is 
not of minimal degree. 

Conversely, if degp > degIp for all polynomials p, then I(Hlk) c Hk n 
P, while, for any correct (9, Q), I is 1-1 on Q, hence linear independence 
preserving, and one therefore has dim(H~k n Q) = dimI(Hlk n Q), while also 
I (Hk n Q) C Hnk n P. Therefore, P has the minimal-degree property. El 

Property (9) asserts that Ioexe, = H0e 0 H01 . For its proof, observe that 

ee= (expoxe )1 = (exp0 0 exp01)~, 

HE 0 Hl0 = (expe)1 (0 (expE)t, 
and 

V(f g)t (fl) (9 (gl), 
hence that, for any homogeneous basis B for H0 and any homogeneous basis 
B' for -le,, the collection B 0 B' := {b 0 b': (b, b') E B x B'} is a basis for 
-le 0 H-le, and in H-exe, hence a basis for it since it consists of #(B x B') = 

(0 x 9') = dim lexe, elements. 
For i = 1, ... , d, let 0i = {x,(O), ...X, i(y(i))} be a collection of y'(i) + 1 

points in IR. Inductive application of property (9) shows that 
d d 

(7.2) Hie = 0ly()(RI) for e = X 93j. 

In conjunction with the monotonicity property (8), this implies that our H10 
coincides with the standard assignment even in the case when 93 is an 'order- 
closed' subset of a rectangular grid 

d 
X ei =: X {xi(O), Xi.i.. 
i i=1 

Here, we call 9 order-closed (or, a 'lower set') if it is of the form 9 = {G,: a E 
F} for a := (xi (a(l)), ... , xd(a(d))), with r an order-closed subset of C., 
i.e., a E F and ,6 < a implies /B E F, and 

Cy := {O., y(l)} x ... O. *-, y(d)}- 

Thus, 
F U C,. 

aer 

We show now that the standard assignment for this 9, i.e., the space span{( )fl: 
,B e F}, does indeed coincide with 0E. 

Since, for any a E F, the subset E9a {0fl: /8 E Ca} of 9 is a Cartesian 
product of sets from IR, our assignment for it is necessarily na := span{( )f: 
/3 < a}, by (7.2). By property (8), each such Ha must be contained in Hl0, 
hence span{( )fl: / E F} c Hl0, and, since dimH0 = #9 = #F, H0 must 
coincide with that span. 
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Note that the particular ordering of the points Xi(j) is arbitrary. For exam- 
ple, for each of the following three datapoint distributions E 

x x x x x x x x x x x x x x 
x x x x x x x x x x 
x x x x x x 
x x x x x x 
x x x x x x x x x x 
x x x x x x x x x x x x x x 

in the plane, the discussion just given proves that 

HI = l(R) 0 15(R) + 15(R) 0 II(R). 

For, each set is obtained from a rectangular set of 6 x 6 points by retaining 
two rows and two columns. It is not all that hard to see, in each of these 
figures, the two rectangles, one 2 x 6 and the other 6 x 2, which give rise to 
the corresponding sum of polynomial spaces. 

Finally, property (10) is proved in [5]. 

8. GENERALIZATIONS 

With minor changes, the entire discussion can be extended to the situation 
when we consider an arbitrary linearly independent sequence AI A2, 2 X , A, of 
linear functionals instead of the particular linear functionals f F- f(O) with 0 
in some n-set O. 

Assuming the linear functionals Ai to be regular enough to be representable 
as 

Aif = (fi, f) for f cl, 

with fJ functions analytic at the origin, the appropriate Vandermonde-like ma- 
trix now has in its ith row the derivatives Daf (0) . For small enough x, 

fi(x) = A i(exp X). 

The computations are otherwise unchanged. In particular, the homogeneous 
polynomials g11, ... , gnu constructed span a scale-invariant polynomial space 
of smallest degree on which the sequence Al , A2, ..., in is maximally linearly 
independent. Further, 

(8.1) ZE i g 

is the unique element in that space which agrees with f at the Ai . 
This general setting is discussed in [5] in detail, and also for various specific 

choices of the 'interpolation conditions' Al1, 2 ... , in . The discussion there 
covers even linear functionals which are not 'regular' in the above sense and 
also the situation when we have infinitely many of them. 

Finally, we note that, starting with an arbitrary basis fi, f2, ...n, f for 
some linear subspace H of functions analytic at the origin, the homogeneous 
polynomials go, ..., gnu provided by the algorithm form a basis for HI = 

spankff: f c H}. In particular, this leads to a construction of a basis for the 
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space of polynomials in the span of the translates of a box spline, as is detailed 
in [4]. 
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